OPEN ACCESS
PEER-REVIEWED |
RESEARCH ARTICLE
Digestive system and growth performance of African catfish larvae Clarias gariepinus, (Burchell, 1822) maintained with biofloc technology with the addition of Chlorella sp.
Main Article Content
Abstract
The production of catfish in aquaculture is still limited by the low supply of good quality seeds. One solution that can be done to overcome this problem is by the application of biofloc technology with microalgae addition. This study aims to evaluate the performance of digestive system, growth and robustness of the African catfish larvae maintained with biofloc technology and the addition of Chlorella sp. This research applied a completely randomized experimental design consisted of three treatments and triplicates, i.e larvae maintained with regular water exchange as the control (K), larvae maintained biofloc system (BF) and larvae reared with biofloc treatment and Chlorella sp. addition (BFC) with a rearing period of 15 days. Length growth, specific growth rate, condition factor, the activity of protease, amylase and lipase were not significantly different between treatments (P>0.05). The villi length in fish maintained in BF treatmen (136μm), was higher than those of BFC (121μm) and K treatments (105μm). The particle size of floc in BF and BFC were 0.44±0.025 and BFC 0.79±0.048 mm, respectively. The survival of catfish larvae in the BFC treatment was (51 ± 0,32)b, which was significantly higher (P<0.05) than those of K (45±0.52)a and BF (45±0.15)a. The results of stress test using 15 g L-1 water salinity demonstrated that the fish maintained in BFC has a higher survival (63%) than those of BF (47%) and K (43%). Overall results of the present study showed that the addition of Chlorella sp. could improve the growth performance and robustness of African catfish larvae against salinity stress.
Abstrak
Produksi ikan lele dalam budidaya masih dibatasi oleh rendahnya pasokan benih yang berkualitas baik, karena permasalahan ketersediaan nutrisi yang berkualitas selama pemeliharaan larva. Salah satu solusi meningkatkan ketersediaan dan kualitas larva adalah dengan menggunakan teknologi bioflok serta penambahan Chlorella sp. Penelitian ini bertujuan untuk mengevaluasi kinerja sistem pencernaan, pertumbuhan dan ketahanan larva ikan lele yang dipelihara pada sistem bioflok dengan penambahan Chlorella sp. Penelitian ini menggunakan rancangan acak lengkap yang terdiri atas tiga perlakuan dan tiga ulangan, yaitu larva yang dipelihara dengan penggantian air sebagai perlakuan kontrol (K), larva yang dipelihara dengan sistem bioflok (BF), dan larva yang dipelihara dengan perlakuan bioflok dengan penambahan Chlorella sp. (BFC) dengan lama pemeliharaan selama 15 hari. Hasil penelitian ini menunjukkan bahwa pertumbuhan panjang, laju pertumbuhan spesifik, faktor kondisi, aktivitas protease, amilase, dan lipase antar perlakuan tidak berbeda nyata antarperlakuan (P>0,05). Vili larva ikan lele pada perlakuan BF (136 μm) lebih panjang daripada BFC (121μm) dan K (105μm). Ukuran partikel bioflok pada media BF (0,44 ± 0,025 mm) lebih rendah daripada bioflok yang terdapat pada media BFC (0,79 ± 0,048 mm). Tingkat sintasan larva ikan lele pada perlakuan BFC mencapai 51 ± 0,32% lebih tinggi (P<0,05) daripada perlakuan K sebesar 45 ± 0,52% dan BF sebesar 45 ± 0,15%. Hasil uji stres salinitas pada larva ikan lele menunjukkan bahwa larva yang dipelihara dalam media BFC memiliki tingkat sintasan tertinggi (63 ± 3,33%) dibandingkan perlakuan lainnya (P<0.05). Hasil penelitian ini menunjukkan bahwa penambahan Chlorella sp. dapat meningkatkan kinerja pertumbuhan dan ketahanan larva lele terhadap uji stres menggunakan salinitas.
Downloads article
Article Details
Copyright (c) 2020 Jurnal Iktiologi Indonesia |
|
References
Aizzat O, Yap SW, Sopiah H, Madiha MM, Hazreen M, Shailah A, Wan Junizam WY, Nur SA, Srijit D, Musalmah M, Yasmin AMY. 2010. Modulation of oxidative stress by Chlorella vulgaris in streptozotocin (STZ) induced diabetic Sprague-Dawley rats. Advances in Medical Sciences, 55(2): 281-288
Ali A. Al-Ogaly SM. Asgah NA. Goddard JS. Ahmed SI. 2007. Effect of feeding different protein to energy (P/E) ratios on the growth performance and body composition of Oreochromis niloticus fingerlings. Journal of Applied Ichthyology. 24(1): 31- 37.
Angka SL, Mokoginta I, Hamid H. 1990. Anato- mi dan histologi banding beberapa ikan air tawar yang dibudidayakan di Indonesia. Departemen Pendidikan dan Kebudayaan. Direktorat Jendral Pendidikan Tinggi. Institut Pertanian Bogor. 212 hlm.
Avnimelech Y. 1999. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3): 227–235.
Avnimelech Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture. 264(1): 140–147.
Bakar NSA, Nasir NM, Lananan F, Hamid SHA, Lam SS, Jusoh A. 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing Bioflocs Technology. International Biodeterioration and Biodegradation, 102: 100-106.
Bauer LM, Costa JAV, da Rosa APC, Santos LO. 2017. Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresource Technology, 244(2): 1425–1432.
Bergmeyer HU, Grassi M. 1983. Methods of Enzymatic Analysis Vol. 2. Verlag Chemie. Berlin .
Borlongan LG. 1990. Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture, 89(3): 315-325.
[DJPB] Direktorat Jendral Perikanan Budidaya. 2018. Subsektor perikanan budidaya sepanjang tahun 2017 menunjukkan kinerja positif. Direktorat Jenderal Perikanan Budidaya. Tersedia dalam https://kkp.go.id/ djpb/artikel/3113-subsektor-perikanan-budi daya-sepanjang-tahun-2017-menunjukkan- kinerja-positif
Ebeling JM, Timmons MB, Bisogni JJ. 2006. Engineering analysis of thestoichiometry of photoautotrophic, autotrophic, and he- terotrophic removel of ammonia-nitrogen in aquaculture system. Aquaculture. 257(1): 346-358.
Effendie MI. 2002. Biologi Perikanan. Yayasan Pustaka Nusatama, Yogyakarta. 163 p.
Ekasari J. 2009. Teknologi bioflok: teori dan aplikasi dalam perikanan budidaya sistem intensif. Jurnal Akuakultur Indonesia, 8(2): 117-126.
Ekasari J, Angela D, Waluyo SH, Bachtiar T, Surawidjaja EH, De Schryver P. 2014a. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426: 105-111.
Ekasari J, Azhar MH, Surawidjaja EH., Nuryati S, De Schryver P., Bossier P, 2014b. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish & Shellfish Immunology, 41(2): 332–339.
Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Zairin JrM, Bossier P, De Schryver P. 2015. Biofloc technology positively affects Nile tilapia Oreochromis niloticus larvae performance. Aquaculture, 441: 72–77.
Gao F, Liao S, Liu S, Bai H, Wang A, Ye J. 2019. The combination use of Candida tropicalis HH8 and Pseudomonas stutzeri LZX301 on nitrogen removal, biofloc formation and microbial communities in aquaculture. Aquaculture, 500: 50-56.
Gunadi B. 2012. Minimalisasi limbah nitrogen dalam budidaya ikan lele Clarias gariepinus dengan sistem akuakultur berbasis jenjang rantai makanan. Disertasi. Sekolah Pascasarjana Institut Pertanian Bogor.
Hargreaves JA. 2006. Photosynthetic suspended -growth systems in aquaculture. Aqua- cultural Engineering, 34(3): 344–363.
Hasegawa T, Noda K, Kumamoto S, Ando Y, Yamada Akira, Yoshikai Y.2000. Chlorella vulgaris culture supernatant (CVS) reduces psychological stress-induced apoptosis in thymocytes of mice. International Journal of Immunopharmacology, 22(11): 877-885.
Ju ZY, Forster I, Conques L, Dominy W, Kuo WC, Horgen FD. 2008. Determination of microbial community structures of shrimp floc cultures by biomakers and analysis of floc amino acid profiles. Aquaculture Research 39(2): 118-133.
Kawaroe M, Prartono T, Sunuddin A, Sari DW, Augustine D. 2010. Mikroalga: Potensi dan Pemanfaatannya untuk Produksi Bio Bahan Bakar. IPB Press. Bogor.
Lavens P, Sorgeloos P. 1996. Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper. No 361: 295 p.
Niczyporuk AP, Bajguz A, Zambrzycka E, Żyłkiewiczb GB. 2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiology and Biochemistry, 52: 52-65.
Rollo A, Sulpizio R, Nardi M, Silvi S, Orpianesi C, Caggiano M, Cresci A, Carnevali O. 2006. Live microbial feed supplement in aquaculture for improve- ment of stress tolerance. Fish Physiology and Biochemistry, 32: 167–177.
Smith LS. 1982. Introduction to Fish Physio- logy. T.F.H Publication. 350 p.
Steel RGD, Torrie JH. 1993. Prinsip dan Prosedur Statistika: Suatu Pendekatan Biometrik. Edisi Kedua. Diterjemahkan oleh Bambang Sumantri.. PT Gramedia Pustaka Utama. Jakarta.
Widanarni, Yuniasari D, Sukenda, Ekasari J. 2010. Nursery culture performance of Litopenaeus vannamei with probiotics addition and different c/n ratio under laboratory condition. HAYATI Journal of Biosciences, 17(3): 115-119.
Wijffels RH, Barbosa MJ. 2010. An outlook on microalgal biofuels. Science, 329: 796–799.
Worthington V. 1993. Worthington Enzyme Manual. Enzymes and Related Biochemicals Worthington Chemical. New Jersey. US. 399 p.
Zonneveld N, Huisman EA, Boon JH. 1991. Prinsip-prinsip Budidaya Ikan. PT Gramedia Pustaka Utama. Jakarta. 318 hlm.